1	$BDF = 70^{\circ}$	4	В1	may be marked on diagram
	Alternate segment theorem		B1	reason, the angle between a tangent and a chord is equal to the angle subtended in the <u>alternate</u> segment
	EFB = 180 - (70 + 40) = 70 opposite angles in a cyclic quadrilateral		B1	Angle <i>EFB</i> with reason, <u>opposite angles</u> in a <u>cyclic quadrilateral sum to 180°</u>
	CBF = EFB <u>alternate</u> angles therefore EF is parallel to ABC		B1	conclusion, <u>alternate</u> angles are equal
				Total 4 marks

2	(a) (i)	40	2	B1	cao (may be written on the diagram)
	(ii)	Angles in same segment (are equal)		В1	or <u>angles</u> at the <u>circumference from</u> the same <u>arc</u> of the circle or <u>angles</u> on the <u>same arc</u> of the circle Alternatively: (two applications of) Opposite <u>angles</u> of a <u>cyclic quadrilateral sum</u> to 180°
	(b)	140	1	B1	cao (may be written on the diagram)
					Total 3 marks

3	ADC = 180 - 58 (= 122) or EDF = 122 or CDE = 58 or ADF = 58 e.g. DEF = 58 ÷ 2 or DEF = (180 - 122) ÷ 2	29		M1 M1 A1	may be seen marked on the diagram complete method to find angle <i>DEF</i>
			5	B2	dep on M2 for fully correct reasons for their method (B1 dep on M1 for one correct reason stated and used) e.g. Allied angles, co-interior angles, Alternate angles, Corresponding angles, Vertically opposite angles are equal (or Vertically opposite angles are equal), Angles on a straight line add up to 180°(or angles on a straight line add to 180°), Sum of two angles in a triangle are equal to opposite exterior angle, Angles in a triangle add up to 180°(or Angles in a triangle add up to 180°), Base angles in an isosceles triangle Angles in a quadrilateral add up to 360. (accept "4-sided shape" or parallelogram) Opposite angles of a parallelogram are equal
					Total 5 marks

4	$CB = 13\sin 40 \ (= 8.3562)$			M1
	$\frac{1}{2} \times 6 \times 8.35 \times \sin ACB = 22$			M1
	Acute version of $ACB = \sin^{-1} \left(\frac{22}{\frac{1}{2} \times 6 \times "8.35"} \right) (= 61.35)$			M1
	<i>ACB</i> = 180 – "61.353" (= 118.647)			M1
	$AB^2 = 6^2 + "8.35"^2 - 2 \times 6 \times "8.35" \times \cos"118.64" $ (= 153.98)			M1
		12.4	6	A1 accept 12.3 – 12.5
				Total 6 marks

5	ORQ = 90 - 60 (=30) or $OQR = 30or PQR = 0.5 \times (360 - 238) (= 61)or QPR = 60or OPR = \frac{180 - (360 - 238)}{2} (= 29)$		4	M1	The correct working or the correct angle for <i>ORQ</i> or <i>OQR</i> or <i>PQR</i> or <i>QPR</i> or <i>OPR</i> . Must be clearly stated as the correct angle or shown on the diagram in correct position. (eg just seeing 30 in working without a label is not sufficient for the award of this mark)
	Working not required, so correct answer scores M1A1 (unless from obvious incorrect working)	31		A1	if not on answer line, may be seen on diagram or clearly labelled
	NB: degrees symbol not essential for reasons We will allow the symbol Δ for 'triangle' ∠ for angle Σ for sum	full reasons for method used		B2	(dep on a fully correct method that should lead to the answer) for fully correct reasons for method used (underlined words must be seen) eg Angle between tangent and radius is 90° Angles around a point total 360° Angle at centre is twice angle at circumference/edge Total of angles in triangle is 180° / triangle 180° Base angles in an isosceles triangle (or 2 sides equal, so 2 angles equal) Angles in a quadrilateral total 360° or quadrilateral 360° / Accept "4-sided shape" or "quad" Alternate segment theorem (B1 dep on M1 for at least one reason for method used)
					Total 4 marks

6	Angle <i>EBC</i> or <i>ECB</i> = $(180 - 44) \div 2 (= 68)$		5	M1	Could be seen on diagram
	Angle <i>GBC</i> = 180 – "68" (= 112)			M1	for a method to as far as one step away from working
	or Angle <i>GBC</i> = "68" + 44 (= 112)				out Angle JGH (an angle corresponding or vertically
	or Angle $BGH = "68"$ (same as EBC)				opposite to JGH or at the same point on a straight line
	Angle $ABE = 180 - 68$ " (= 112) and Angle $BGF = 112$ "				with JGH)
	or Angle $ABG = "68"$ and Angle $BGH = "68"$ or Angle				Could be seen on diagram.
	FGJ = "68" or Angle $BGF = 180 - $ "68" (=112)				(the award of this mark also implies the previous M1)
	Working not required, so correct angle scores 3 marks (unless from obvious incorrect working)	112		Al	Could be seen in correct place on diagram
	NB: reasons must include the underlined words			B2	for correct answer with full reasons for their method
	Accept \angle for angle(s) and \sqcup for triangle				eg isosceles triangle (or 2 equal sides, 2 equal angles)
					Angles in a <u>triangle</u> sum to <u>180</u> ° or
	For all angles:				angles in a triangle
	They must be clearly stated as the correct angle or shown				Angles on a straight <u>line</u> sum to <u>180°</u>
	on the diagram in the correct position.				Angles on a straight line sum to 180°
	(eg just seeing 68 in working without a label is not				Exterior angle in a <u>triangle</u> is <u>equal</u> to the two <u>opposite</u>
	sufficient for the award of a mark for angle <i>EBC</i>)				interior angles.
					Vertically opposite angles are equal.
					Vertically opposite angles are equal.
					Corresponding angles are equal. Alternate angles are equal
					Allied angles sum to 180° (or co-interior angles)
					Angles at a point (or full turn) add up to 360° (or
					angles at a point)
					(B1 for one correct reason appropriate to their method,
					dep on M1)
					Total 5 marks

7		<i>BFD</i> = 39°	<i>BED</i> = 39°		4	B1	
	•	BDE = 180 - (18 + 39)	$EBD = 18^{\circ}$ and			M1	•
			BDE = 180 - (18 + 39)				
				123		A1	
						B1	dep on M1 for all correct circle theorems relevant for their method e.g. alternate segment theorem and opposite angles in a cyclic quadrilateral sum to 180° or alternate segment theorem and angles in same segment are equal
	•						Total 4 marks

8	(a) (i)	62	3	B1
	(a) (ii)	118		B1ft 180 – their (a)(i)
	(b)	62		B1
				Total 3 marks

9	$ABC = 90^{\circ}$ and $ACB (= ADB) = 180 - 90 - 55 (=$		4	M1
'	35)		*	1411
	, , , , , , , , , , , , , , , , , , ,			
	or			
	$ABO = 55^{\circ}$ and $AOB = 180 - 2 \times 55 (= 70)$			
	or			
	$BDC = 55^{\circ}$, $ADC = 90^{\circ}$ and $ADB = 90 - 55 (= 35)$			
		35		A1 for $ADB = 35$
,	Angles in a semicircle are 90°			B2 (dep on M1) for all 3 reasons appropriate
	Angles in a triangle add to 180° (Angles in a			to their method
	triangle add to 180°)			
	Angles in the same segment (are equal) OR angles			B1 (dep on M1) for one correct circle theorem
	at the circumference subtend(ed) from the same			appropriate to their method)
	arc/chord of the circle (are equal)			appropriate to their method)
	` ' '			ND E d d: 1 d 1 1 2
	or			NB For the third method only 2 reasons are
	Angles in an <u>isosceles</u> triangle (are equal)			required
	Angles in a triangle sum to 180° (Angles in a			
	triangle add to 180°)			
	Angle at the centre is $2 \times$ (double) angle at			
	circumference / angle at circumference is ½ angle at			
	centre			
	or			
	Angles in the same segment (are equal) OR angles			
	at the circumference subtend(ed) from the same			
	arc/chord of the circle			
	Angles in a semicircle are 90°			
				T . 1.4
				Total 4 marks

10	$\frac{\sin Q}{4.2} = \frac{\sin 18}{1.6}$ oe or		6	M1	correct sine ratio - could be rearranged or correct substitution into the cosine rule using
	$1.6^{2} = 4.2^{2} + RQ^{2} - 2 \times 4.2 \times RQ \times \cos 18 \text{ oe}$				angle R
	$\sin^{-1}\left\{4.2 \times \frac{\sin 18}{1.6^{-}}\right\} $ (= 54.2) or $\sin^{-1}\left(0.811\right)$			M1	
	$\frac{2 \times 4.2 \times \cos 18 \pm \sqrt{(2 \times 4.2 \times \cos 18)^2 - 4 \times 1 \times 15.08}}{2}$				
	180 – "54.2" (=125.8) or			M1	This can be implied by the correct value(s)
	<i>RQ</i> = 3.0585 and 4.933				(125.8 or 3.0585) used later
	(P=) 180 -"125.8" - 18 (=36.2)			M1	
	or $RQ = \sqrt{4.2^2 + 1.6^2 - 2 \times 4.2 \times 1.6 \times \cos^3 36.2}$ (= 3.0585)				
	or 3.0585 chosen as value from cosine rule above				
	perpendicular height = 4.2sin"36.2" (= 2.4805) (where "36.2" comes from correct working)				
	(Area =) $\frac{1}{2} \times 4.2 \times 1.6 \times \sin("36.2")$			M1	
	or				
	$(Area =)\frac{1}{2} \times 4.2 \times "3.0585" \times sin18$				
	or 1				
	$(Area =)\frac{1}{2} \times 1.6 \times "2.4805"$				
		1.98		A1	awrt 1.98
					Total 6 marks

11	$SCD = 128^{\circ} \text{ or } BCS = 32^{\circ}$		4	M1	angles need to be ident	tified or	M2 for
	or $TSC = 180 - 128 (= 52)$				may be seen marked or		(BCD =) 128 + 32 (=
	· · ·				diagram		160) or $(DCV =) 52 -$
	eg (int \angle =)128+32(=160) or (ext \angle =)180-(128+32)(=20) or (ext \angle =)"52"-32(=20)			M1	(dep on previous M1) method to find the size interior or exterior ang be seen marked on the diagram.	e of one gle, may	32 (= 20) (may be
	eg $180(n-2) = "160"n$ or $360 \div "20"$			M1	for setting up an equation angles or 360 ÷ "20"	ion for t	he sum of interior
	Working required	18	1	A1	dep on M2		
					•		Total 4 marks
12	3 × 180 (= 540) or 360 – [(180 – 90) + (180 – 135) + (180 – 67) (180 – 119)] (= 51) or	+			3 M1		

12	3 × 180 (= 540) or		3	M1
	360 - [(180 - 90) + (180 - 135) + (180 - 67) +			
	(180 - 119)] (= 51) or			
	360 - (90 + 45 + 113 + 61) (= 51)			
	90 + 135 + 67 + 119 + x = "540" oe			M1
	411 + x = "540" oe or			
	" 540 " – $(90 + 135 + 67 + 119)$ or			
	$3 \times 180 - (90 + 135 + 67 + 119)$ oe or			
	540 – 411 or 180 – "51" oe			
·	Correct answer scores full marks (unless from	129		A1
	obvious incorrect working)			
				Total 3 marks

13	$\cos 50 = \frac{18}{(AB)}$ or $\sin 40 = \frac{18}{(AB)}$ or		5	M1	M2 for $(AB =) \sqrt{18^2 + (18 \tan 50)^2}$ oe
	$\frac{(AB)}{\sin 90} = \frac{18}{\sin 40}$				(= 28.0030) or 28
	$(AB =)$ $\frac{18}{\cos 50}$ (= 28.0030) oe or 28 or			M1	
	$(AB =)$ $\frac{18}{\sin 40}$ (= 28.0030) oe or 28				
	$\frac{1}{2} \times \pi \times "28.0030" (= 43.9)$ oe or 44			M1 for	use of πd or $\frac{1}{2}\pi d$ oe
	$\pi \times$ "28.0030" (= 87.9) oe or 88			Allow a scored	ny value of $AB > 18$ if M2 not
	"28" + "43.9" (= 71.9900) or "28" + "44"			1	om previous M1 their d + their $\frac{1}{2}\pi d$
	Correct answer scores full marks (unless from obvious incorrect working)	72		Al awrt	72
1					Total 5 marks

14	$\frac{\sin ABC}{\sin ABC} = \frac{\sin 64}{\cos 64}$ oe		5	M1
	${24} = {31} = {31}$			
	$(ABC =)\sin^{-1}\left(\frac{24 \times \sin 64}{31}\right) (= 44)$			M1
	180 – "44" – 64 (= 71.9)			M1 accept 72
	$(DE^2 =)16^2 + 19^2 - 2 \times 16 \times 19 \times \cos"71.9$ " or			M1 for DE^2 or DE
	$(DE =)\sqrt{16^2 + 19^2 - 2 \times 16 \times 19 \times \cos"71.9"}$ or			
	$(DE =)\sqrt{617-181.8} \text{ or } \sqrt{428.166}$			
	Correct answer scores full marks (unless from	20.7		A1 awrt 20.7
	obvious incorrect working)			
				Total 5 marks

15	eg (6 – 2) × 180 (= 720)		4	M1	for a method to find the sum of the interior angles for a hexagon
	eg "720"-(90+95+149+104+57)(=225)			M1	for a method to find the missing angle in the hexagon
	eg $\frac{360}{"225"-180}$ or $\frac{360}{"45"}$ or $\frac{180(n-2)}{n} = 360 - "225"$ oe or $\frac{180(n-2)}{n} = "135"$			M1	for a complete method
	Working required	8		Al	cao dep on M2 NB: the answer of 8 can be gained from assuming that AB splits reflex GBC into 2 equal angles – without gaining the first 2 method marks [M0M0 is awarded] Award SCB1 for the student who gains an answer of 8 from this assumption or trial and improvement or no method shown
					Total 4 marks

16	eg $\frac{1}{2}(2x-1)(2x+1)\sin 30 = x^2 + x - 3.75 \text{ oe}$		6	M1	for equating area of triangle with the given area
		3.5		A1	for the value of x
	$(BC^2 =)$ "6" ² +"8" ² - $(2\times$ "6"×"8"×cos 30)(=16.8(615)) oe or $(BC =)$ $$ "16.8" (= 4.10(628))			M1	ft dep on M1 for a correct method to find BC^2 or BC ($AB = 6$ and $AC = 8$)
	$\frac{\sin(ABC)}{"8"} = \frac{\sin 30}{\sqrt{"16.8"}} \text{ oe or } \frac{\sin(BCA)}{"6"} = \frac{\sin 30}{\sqrt{"16.8"}} \text{ oe or}$ $"6"^2 = "8"^2 + \left(\sqrt{"16.8"}\right)^2 - \left(2 \times "8" \times \sqrt{"16.8"} \times \cos(BCA)\right) \text{ oe or}$			M1	ft dep on previous M1 for a correct method to find angle ABC or angle BCA
	$"8"^{2} = "6"^{2} + (\sqrt{"16.8"})^{2} - (2 \times "6" \times \sqrt{"16.8"} \times \cos(ABC)) \text{ oe}$				
	$(\sin ABC =) \frac{\sin 30 \times "8"}{\sqrt{"16.8"}} (= 0.974)$ oe or $ABC = 76.9$ or $(\sin BCA =) \frac{\sin 30 \times "6"}{\sqrt{"16.8"}} (= 0.730)$ oe or $BCA = 46.9$ or			M1	ft dep on previous M1 for a correct rearrangement for sin ABC or sin BCA or cos BCA or cos ABC
	$(\cos BCA =)$ $\frac{"8"^2 + (\sqrt{"16.8"})^2 - "6"^2}{2 \times "8" \times (\sqrt{"16.8"})} (= 0.682)$ oe or $BCA = 46.9$ or				
	$(\cos ABC =)$ $\frac{\text{"6"}^2 + (\sqrt{\text{"16.8"}})^2 - \text{"8"}^2}{2 \times \text{"6"} \times (\sqrt{\text{"16.8"}})} (= -0.226) \text{ oe or } ABC = 103.0$				
	Correct answer scores full marks (unless from obvious incorrect working)	103		A1	accept awrt 103
					Total 6 marks

17	180 – 78 – 78 oe		2	M1 for a complete correct method to find
	or			angle ABC. This is not awarded if the
	$(90-78) \times 2$ oe			angles are incorrectly labelled unless they
				have clearly started again
				(Ignore incorrect angles on the diagram if
				a student shows a correct method leading
				to the required answer)
•	Correct answer scores full marks (unless from	24		A1 award full marks if 24 is seen in the
	obvious incorrect working)			correct place on the diagram unless
	, , , , , , , , , , , , , , , , , , ,			contradicted on the answer line
,				Total 2 marks

18	(radius of large circle =) $\frac{4}{\cos 54}$ or $\frac{4}{\sin 36}$ or $\frac{8\sin 54}{\sin 72}$ or $\sqrt{\frac{8^2}{2-2\cos 72}}$ (= 6.805) or (height of 1 triangle within pentagon =) $4\tan 54$ (=5.505) oe		6	M1	for a complete method to find the radius of the large circle or the perpendicular height of one triangle within the pentagon
	(area of large circle =) $\pi \times ("6.805")^2$ (= 145.489) oe or (area of sector =) $\frac{72}{360} \times \pi \times ("6.805")^2$ (= 29.097) oe		-	M1	for a complete method to find the area of the large circle or the area of a sector of the large circle
	(area of pentagon =) $5 \times \frac{1}{2} \times 8 \times \text{``5.505''} (= 80 \tan 54 = 110.11)$ or $10 \times \frac{1}{2} \times 4 \times \text{``5.505''} (= 80 \tan 54 = 110.11)$ or $5 \times \frac{1}{2} \times \text{``6.805''} \times \text{``6.805''} \times \sin 72 (= 110.11)$ oe OR (area of one triangle =) $\frac{1}{2} \times 8 \times \text{``5.505''} (= 22.022)$ or $\frac{1}{2} \times \text{``6.805''} \times \text{``6.805''} \times \sin 72 (= 22.022)$ or $\frac{1}{2} \times \text{``6.805''} \times 8 \times \sin 54 (= 22.022)$ oe			M1	for a complete method to find the area of the pentagon OR the area of one triangle eg <i>OED</i> or equivalent
	"145.489"-"110.11"+ πr^2 ="110.11"- πr^2 oe or $5 \times ("29.097"-"22.022") + \pi r^2 = 5 \times "22.022" - \pi r^2 oe$			M1	for a correct equation for the radius of the smaller circle
	$2\pi r^2 = 2 \times "110.11" - "145.489" (= 74.731)$ oe		-	M1	for a correct rearranged equation with the area of the circle the subject or better
	Correct answer scores full marks (unless from obvious incorrect working)	3.45		A1	accept 3.43 – 3.45
					Total 6 marks

19	(4x-27) + (3x+46) = 180 oe or		4	M1	Sum angles A and B to 180,
	"expression for C" + $(3x + 10) = 180$				or find an expression for BCD and
	or				sum all angles to 360.
	7x + 19 = 180				[condone missing brackets and
	or				condone use of any letter or
	3x + 46 + 4x - 27 + 3x + 10 + ["180 - (3x + 10)"] = 360				expression for angle C (even x or
	27 - 50 - 10 - [100 (50 - 10)] 500				BCD)]
				A1	x = 23
	eg 3 ×"23" + 46 (= 115)			M1ft	dep on M1
	or				using their x to calculate a value for
	eg $180 - (3 \times "23" + 10) (= 101)$				angle B or 'their' C (cannot be a
					negative value and cannot just be x)
	Correct answer scores full marks (unless from obvious	115		A1	Allow $3x + 46$ or ABC if 115 is
	incorrect working)	- 40			clearly seen in working or on
					diagram
					Total 4 marks
$\overline{}$					10tal 7 mai Ks

20	eg $DEK = \frac{360}{9}$ or 40 or interior angle = $\frac{(9-2)\times 180}{9}$ or 140 or $OFK = 140 \div 2 (= 70)$ or $FOK = \frac{2}{9} \times 360 (= 80)$ or $EDK = 180 - 0.5 \times 140 (=110)$ Angles marked correctly (any exterior or interior angle) gains this mark		3	M1	method to find interior or exterior angle or correct interior or exterior angle stated or shown correctly on diagram or for using 70° for <i>OFK</i> or 80° for <i>FOK</i> or 110 for <i>EDK</i> If a student has only found an interior or exterior angle and has clearly mixed up interior and exterior angles this mark cannot be awarded but can still award for any of the others angles stated
	EDK = 110 and $DEK = 40orFOK = 80$ and $OFK = 70orODE = 70$ and $DEK = 40orFED = 140$ and $EDK = 110$ oe Correct answer scores full marks (unless from obvious incorrect working)	30		M1	For two correct angles that can lead directly to the answer in a single step (eg 180 – both angles or one angle minus the other)
-	ovious incorrect working)				Total 3 marks
	1		1		1 otal 5 marks